Смеситель        20.06.2020   

Пошаговая инструкция сборки станка с чпу своими руками. Изготовление печатных плат на чпу станке Самодельный станок чпу для печатных плат

В наше время у рукодельных людей всё чаще можно встретить новые станки, которые управляются не руками, как мы все привыкли, а компьютерной программной и компьютеризированной оснасткой. Такое новшество получило название ЧПУ (числовое программное управление).

Такая технология применяется во многих учреждениях, на больших производствах, а также в хозяйских мастерских. Автоматизированная система управления позволяет сэкономить очень много времени, а также повысить качество производимой продукции.

Автоматизированной системой управляет программа с компьютера. В эту систему входят асинхронные двигатели с векторным управлением, имеющие три оси движения электрического гравера: X, Z, Y. Ниже мы рассмотрим, какими бывают станки с автоматическим управлением и расчётами.

Как правило, на всех станках с ЧПУ используется электрический гравер, либо фрезер, на котором можно менять насадки. Станок с числовым управлением применяется для придания тем или иным материалам элементов декора и не только. ЧПУ станки, в связи с продвижениями в компьютерном мире, должны иметь множество функций. К таким функциям относятся:

Фрезерование

Механический процесс обработки материала, в процессе которого, режущий элемент (насадка, в виде фрезы), производит вращательные движения на поверхности заготовки.

Гравировка

Заключается в нанесении того или оного изображения на поверхности заготовки. Для этого используют либо фрезы, либо штихель (стальной стержень с заострённым под углом одним концом).

Сверление

Механическая обработка материала резаньем, с помощью сверла, за счёт которого получаются отверстия разных диаметров и отверстия, имеющие много граней различных сечений и глубин.

Лазерная резка

Способ раскроя и резанья материала, при котором отсутствует механическое воздействие, сохраняется высокая точность заготовки, а также деформации, совершаемые данным способом, имеют минимальные деформации.

Графопостроитель

Производится высокоточное рисование сложнейших схем, чертежей, географических карт. Рисование производится за счёт пишущего блока, посредством специализированного пера.

Рисование и сверление печатных плат

Производство плат, а также рисование электропроводящих цепей на поверхности диэлектрической пластины. Также сверление маленьких отверстий под радиодетали.

Какие функции будет выполнять ваш будущий станок с программным управлением решать только вам. А дальше рассмотрим конструкцию станка ЧПУ.

Разновидность станков ЧПУ

Технологические признаки и возможности данных станков приравниваются к универсальным станкам. Однако, в современном мире, выделяют три разновидности станков ЧПУ:

Токарные

Предназначение таких станков заключается в создании деталей по типу тел вращения, которое заключается в обработке поверхности заготовки. Также производство внутренних и наружных резьб.

Фрезерные

Автоматизированная работа этих станков заключается в обработке плоскостей и пространств различных корпусных заготовок. Осуществляют фрезеровку плоскую, контурную и ступенчатую, под различными углами, а также с нескольких сторон. Производят сверление отверстий, нарезание резьб, развёртывание и растачивание заготовок.

Сверлильно — расточные

Выполняют рассверливание, сверление отверстий, растачивание и развёртывание, зенкерование, фрезеровка, нарезание резьб и многое другое.

Как мы видим, станки ЧПУ имеют большой ряд функционала, которые они совершают. Поэтому и приравниваются к универсальным станкам. Все они стоят очень дорого и купить какую-нибудь установку из вышеперечисленных просто невозможно, в силу финансовой недостаточности. И можно подумать, что придётся совершать все эти действия вручную, на протяжении всей жизни.

Можно не расстраиваться. Умелые руки страны, ещё с первого появления заводских станков ЧПУ, начали создавать самодельные прототипы, которые работают не хуже профессиональных.

Все комплектующие материалы для станочков ЧПУ можно заказать в интернете, где они находятся в свободном доступе и стоят довольно-таки недорого. Кстати, корпус автоматизированного станка можно изготовить своими руками, а за правильными размерами можно обратиться в интернет.

Совет: Перед выбором станка ЧПУ определитесь с тем, какой материал вы будете обрабатывать. Этот выбор будет иметь главное значение при сооружении станка, так как это напрямую зависит от размеров оборудования, а также затрат на него.

Конструкция станка ЧПУ полностью зависит от вашего выбора. Можно приобрести уже готовый стандартный набор всех необходимых деталей и просто собрать его в своём гараже или мастерской. Или заказывать всё оснащение отдельно.

Рассмотрим стандартный набор деталей на фото :

  1. Непосредственно рабочая область, которая производится из фанеры - это столешница и боковой каркас.
  2. Направляющие элементы.
  3. Держатели направляющих.
  4. Линейные подшипники и втулки скольжения.
  5. Опорные подшипники.
  6. Ходовые винты.
  7. Контролёр шаговых двигателей.
  8. Блок питания контролёра.
  9. Электрический гравер или фрезер.
  10. Муфта, соединяющая вал ходового винта с валом шаговых двигателей.
  11. Шаговые двигатели.
  12. Ходовая гайка.

Используя данный перечень деталей, вы смело сможете создать свой собственный фрезерный по дереву с ЧПУ станок с автоматизированной работой. Когда вы соберёте всю конструкцию, можете смело приступать к работе.

Принцип работы

Пожалуй, самым главным элементом на этом станке является фрезер, гравер или шпиндель. Это зависит от вашего выбора. Если у вас будет стоять шпиндель, то хвостик фрезы, который имеет цангу для крепления, будет плотно крепиться в цанговый патрон.

Сам патрон непосредственно закреплён на шпиндельном вале. Режущая часть фрезы подбирается исходя из выбранного материала. Электрический мотор, который располагается на движущейся каретке, вращает шпиндель с фрезой, что позволяет обрабатывать поверхность материала. Управление шаговыми двигателями происходит от контролера, на который подаются команды с компьютерной программы.

Электроника станка работает непосредственно на обеспечении компьютерного обеспечения, которое должно поставляться с заказываемой электроникой. Программа передаёт команды, в виде G - кодов на контролер. Тем самым эти коды сохраняются в оперативной памяти контролера.

После выбора на станке программы обработки (чистовой, черновой, трёхмерной), команды распределяются на шаговые двигатели, после чего происходит обработка поверхности материала.

Совет: Перед началом работы, необходимо протестировать станок, специализированной программой и пропустить пробную деталь, чтобы убедиться в правильности работы ЧПУ.

Сборка

Сборка станка своими руками не займёт у вас слишком много времени. Тем более что в интернете сейчас можно скачать очень много различных схем и чертежей. Если вы купили набор деталей для самодельного станка, то его сборка будет очень быстрой.

Итак, разберём один из чертежей собственно ручного станка.

Чертёж самодельного станка ЧПУ.

Как правило, первым делом из фанеры, толщиной 10-11 миллиметров, изготавливается каркас. Столешница, боковые стенки и подвижный портал для установки фрезера или шпинделя, изготавливаются только из фанерного материала. Столешница делается подвижной, используются мебельные направляющие соответствующих размеров.

В итоге должен получиться вот такой вот каркас. После того, как каркасная конструкция готова, в дело вступает дрель и специальные коронки, с помощью которых можно сделать отверстия в фанере.

Каркас будущего станка ЧПУ.

В готовом каркасе необходимо подготовить все отверстия, чтобы установить в них подшипники, направляющие болты. После этой установки, можно производить установку всех крепёжных элементов, электрических установок и т.д.

После того, как сборка завершена, важным этапом становится настройка программного обеспечения станка и компьютерной программы. При настройке программы проверяется работа станка на правильность заданных размеров. Если всё готово, можно приступать к долгожданным работам.

Совет: Перед началом работы необходимо проверить правильность крепления заготовочного материала и надёжность крепления рабочей насадки. Также убедиться в том, что выбранный материал соответствует изготовленному станку.

Наладка оборудования

Наладка станка ЧПУ производится непосредственно с рабочего компьютера, на котором установлена программа для работы со станком. Именно в программу загружаются необходимые чертежи, графики, рисунки. Которые в последовательности преобразуются программой в G - коды, необходимые для управления станком.

Когда всё загружено, совершаются пробные действия, относительно выбранного материала. Именно при этих действиях совершается проверка всех необходимых предустановленных размеров.

Совет: Только после тщательной проверки работоспособности станка можно приступать к полноценной работе.

Техника безопасности

Правила и техника безопасности при работе с данным станком ничем не отличается от работы на всех остальных станках. Ниже будут представлены самые основные:

  • Перед работой проверить исправность станка.
  • Одежда должна быть заправлена должным образом, чтобы нигде ничего не торчало и не могло попасть в рабочую зону станка.
  • Должен быть одет головной убор, который будет прижимать ваши волосы.
  • Около станка должен быть резиновый коврик или невысокая деревянная обрешётка, которые защитят от утечки электричества.
  • Доступ к станку детям должен быть категорически запрещён.
  • Перед работой со станком проверить все крепёжные элементы на их прочность.

Совет: К работе на станке необходимо подходить с трезвой головой и пониманием, что при неправильной работе вы можете нанести себе непоправимый вред.

С полными требованиями к безопасности при работе со станком вы сможете найти во всемирной паутине, т.е. в интернете и ознакомиться с ними.

Видео обзоры

Обзор сборки станка самодельного с ЧПУ

Видео обзор простого станка с ЧПУ

Обзор возможностей самодельного ЧПУ станка

Обзор шаговых двигателей

Обзор видео многоканального драйвера для шаговых двигателей

ВАЖНО! Изготовление печатных плат на станках серии HIGH-Z — весьма точный и быстрый процесс. CNC станки HIGH-Z — это лучшее на сегодня оборудование для производства печатных плат . Наши станки могут одновременно фрезеровать проводящую полосу и сверлить отверстия! Технология изготовления печатных плат на cnc станках HIGH-Z позволяет добиваться весьма высокой точности фрезерования — 0,02 миллиметра. Оснащение для производства печатных плат имеет небольшие размеры.

Производство печатных плат на станках HIGH-Z

ООО «Си-Эн-Си Машин» поставляет лучшее немецкое оборудование для производства печатных плат — станки с ЧПУ серии HIGH-Z и Raptor. Мы — официальный дистрибьтор этих станков в России.

Технология изготовления печатных плат на cnc станке HIGH-Z

Вы проектируете свою печатную плату, например, в PCAD, сохраняете файл как.plt-файл (HPGL) . Далее нужно запустить программу PCNC (поставляется в комплекте).

Для опытных образцов или маленьких серий очень существенно иметь возможность фрезеровки печатных плат. Гравировально-фрезерные cnc станки HIGH-Z имеют возможность фрезеровать проводящую полосу с точностью приблизительно 0,1 — 0,15 мм.

Возможно, Вы знаете на личном опыте, как неудобно отсутствие возможности фрезерования и какое дополнительное оборудование необходимо, чтобы фрезеровать печатные платы самостоятельно.

Оборудование для прототипирования печатных плат

На фрезерных станках с ЧПУ серии HIGH-Z можно изготавливать прототипы печатных плат для мелкосерийных производств из таких материалов как алюминий, текстолит, стеклотекстолит, лавсан и др. волокнистых материалов.

Возможность изготавливать двусторонние печатные платы. Это видео пермской компании ООО «Уралинтелком» демонстрирует процесс производства двусторонней печатной платы со всеми необходимыми операциями: фрезеровка дорожек, сверловка отверстий, обрезка печатной платы на станке HIGH-ZS-400. Также возможно, при необходимости, наносить на плату клеевые составы.

Для производства печатных плат обязательной опцией является механический регулятор глубины , подпружиненный механизм которого считывает неровность поверхности, тем самым, обработка материала производится на четко заданную глубину.

Преимущество cnc станка HIGH-Z:

Как сейчас помню, 23го февраля наткнулся на пост на тудее, где человек хотел гравировать печатные платы на 3д принтере. В комментариях посоветовали не мучать животинку принтер и обратить внимание на проект Cyclone PCB Factory.

Загорелся идеей. В последствии, в какой то момент я даже пожалею что взялся, но это будет сильно позже.

О собственном ЧПУ фрезере для печатных плат я мечтал очень давно, это была вторая хотелка после 3д принтера. Решил повторить проект, тем более что кое-что у меня в закромах уже было.

Скачал файлы проекта и не долго думая принялся печатать детальки. Управился примерно за неделю. Распечатал все, кроме оси Z.

Подробных фотографий всех деталей не осталось. Кому-то делал скриншот настроек печати и результата. Сопло 0,4, высота слоя 0,24. Печатал и слоем 0,28 - вполне нормально печатает.

Станок захотелось сделать цветным, поэтому разные детали печатал пластиком разного цвета. Пластик использовал ABS Prostoplast. Цвета космос, травяной зеленый, алеющий закат.

Лучше бы напечатал все серым космосом. Красный и зеленый оказались достаточно хрупкими и часть деталей дали трещины при сборке. Что-то вылечилось ацетоном, что-то заново перепечатал.

Комплектующие:

Три свободных шаговых двигателя у меня было, покупал их под проект 3д принтера, решил временно задействовать.

Направляющие 8мм добыл из струйных принтеров, раздербанив несколько принтеров на органы. Шерстил местные комиссионки, авито. Донорами стали струйные принтеры HP по 100-200 рублей за штуку. Длинная направляющая пилилась на две части, на оси X и Z.

Прижим бумаги с которого я снял резиновые ролики пошел на ось Y. Длины как раз хватило чтоб обрезать по накатку.

Линейные подшипники оставались с 3д принтера, принтер я перевел на бронзовые втулки в горошек.

В качестве электроники решил использовать одну из своих Arduino Uno на atmega328p. Докупил на Али плату cnc shield 3.0 для Arduino за 200 с копейками рублей.

Блок питания 12В из Леруа Мерлен. Покупал чтоб запитать три 12В галогенки, но он их не потянул. Пришлось отремонтировать трансформатор для галогенок Tachibra, а этот блок питания прижился на станочке.

На 3д принтер я поставил драйвера 8825, с принтера у меня остались a4988. Их и поставил на станок.

Подшипники 608ZZ заказал на Али, десяток за 200 с копейками рублей..

В качестве шпинделя планировал использовать свой китайский гравер GoldTool.

Резьбовые шпильки м8 достались с работы на халяву, остались с какого-то монтажа. Подобрал практически "с помойки".

Пока печатался проект и ехали детали с Али, попросил знакомого мебельщика вырезать из МДФ основание и столик. Он не поленился и не пожалел обрезков, выпилил 2 основания и 2 столика. На фото один из комплектов.

Фанеры у меня в закромах не было, купить лист фанеры не позволило жадное животное. МДФ кстати подошел очень хорошо.

Начал собирать станок. Все бы ничего, но стандартные гайки на 13 проваливались и болтались внутри шестерни, гайки на 14 не лезли в шестерни. Пришлось 14е гайки вплавить в шестерни паяльником.

Шестерни или болтались на осях шагового двигателя, или не лезли.

Гайки винтов м3 прокручивались в посадочных гнездах.

Нашел у себя несколько квадратных гаек под резьбу м3 (разбирал когда-то какой-то штеккер, из него), которые идеально подошли и не прокручивались. На работе еще нашел таких штеккеров и пустил на гайки. В основном это крепления направляющих. Обычные гайки для резьбы м3 приходилось придерживать тонким жалом отвертки, чтоб не прокручивались.

Как-то собрал. Позже читая темы про Cyclone, наткнулся на переработанные детальки станка под метрический крепеж. Из этого набора заново распечатал шестерни и крепление концевика по оси Z. Жаль мне не попался этот набор запчастей раньше. Печатал бы эти запчасти.

В надежде применить свой китайский гравер распечатал сначала одно крепление под дремель из комплекта, потом второе. Не подошло, мой гравер ни в одно не лез. Оригинальный же дремель, самый простой, стоил три с небольшим тысячи рублей. За что???

Лишние запчасти.

И еще, линейные подшипники в своих гнездах болтались как что-то в проруби.

Пришлось за тысячу с небольшим заказать на али 200Вт шпиндель с цанговым зажимом ER11. Удачно попал на скидки и использовал купон.

Пока ехал шпиндель, распечатал под него крепление из комплекта станка. И снова прокол, оно такое же ущербное. И ни слова про хомут для шпинделя.

В итоге нашел и распечатал вот это крепление под 52мм шпиндель После небольшой доработки крепление встало на станок, в него хорошо вошел шпиндель.

А вот подшипники на втулках Cargo пришлось из них убрать. Поставил китайские LM8UU

Отдельно хочется сказать про китайские подшипники 608zz. Подшипники с новья с люфтом. Ужасные. Одно что стоят сравнительно не дорого. У нас подшипники не искал.

Кстати подшипники в посадочные места вошли так же, как нечто в прорубь. В посадочных местах подшипники болтались. Не знаю, баг это или фича. В итоге на обоймы подшипников мотнул изоленты.

Китайские lm8uu и lm8luu от 3д принтера так же оказались хламом. В итоге на ось Y сделал подшипники скольжения на втулках Cargo 141091. Распечатал пластиковую обойму и в нее вставил по паре втулок. Получившиеся подшипники вставил в крепления.

На ось Z выбрал более менее живые lm8uu. На ось X верхний подшипник поставил lm8uu, а вместо двух нижних распечатал пластиковую обойму по размеру lm8luu и в нее вставил пару втулок Cargo.

Удачно я ими в свое время закупился. Пригодились.

Во время сборки станка я и пожалел, что взялся. Но, деваться было некуда, надо было проект завершать. Собрал. Запустил!

Еще немного фотографий процесса сборки.

Самое начало сборки...

В очередной раз отмывая раковину от рыжих пятен хлорного железа, после травления платы, я подумал, что пришло время автоматизировать этот процесс. Так я начал делать устройство для изготовления плат, которое уже сейчас можно использовать для создания простейшей электроники.

Ниже я расскажу о том, как делал этот девайс.

Базовый процесс изготовления печатной платы субтрактивным методом заключается в том, что на фольгированном материале удаляются ненужные участки фольги.

Сегодня большинство электронщиков используют технологии типа лазерно-утюжной для домашнего производства плат. Этот метод предполагает удаление ненужных участков фольги с использованием химического раствора, который разъедает фольгу в ненужных местах. Первые эксперименты с ЛУТом несколько лет назад показали мне, что в этой технологии полно мелочей, порой напрочь мешающих достижению приемлемого результата. Тут и подготовка поверхности платы, и выбор бумаги или иного материала для печати, и температура в совокупности со временем нагрева, а также особенности смывки остатков глянцевого слоя. Также приходится работать с химией, а это не всегда удобно и полезно в домашних условиях.

Мне хотелось поставить на стол некоторое устройство, в которое как в принтер можно отправить исходник платы, нажать кнопку и через какое-то время получить готовую плату.

Немного погуглив можно узнать, что люди, начиная с 70х годов прошлого века, начали разрабатывать настольные устройства для изготовления печатных плат. Первым делом появились фрезерные станки для печатных плат, которые вырезали дорожки на фольгированном текстолите специальной фрезой. Суть технологии заключается в том, что на высоких оборотах фреза, закрепленная на жёстком и точном координатном столе с ЧПУ срезает слой фольги в нужных местах.

Желание немедленно купить специализированный станок прошло после изучения цен от поставщика. Выкладывать такие деньги за устройство я, как и большинство хоббийщиков, не готов. Поэтому решено было сделать станок самостоятельно.

Понятно, что устройство должно состоять из координатного стола, перемещающего режущий инструмент в нужную точку и самого режущего устройства.

В интернете достаточно примеров того, как сделать координатный стол на любой вкус. Например те же RepRap справляются с этой задачей (с поправками на точность).

С одного из моих предыдущих хобби-проектов по созданию плоттера у меня остался самодельный координатный стол. Поэтому основная задача заключалась в создании режущего инструмента.

Вполне логичным шагом могло стать оснащение плоттера миниатюрным гравером вроде Dremel. Но проблема в том, что плоттер, который можно дешево собрать в домашних условиях сложно сделать с необходимой жесткостью, параллельностью его плоскости к плоскости текстолита (при этом даже текстолит сам по себе может быть изогнутым). В итоге вырезать на нём платы более менее хорошего качества не представлялось бы возможным. К тому же не в пользу использования фрезерной обработки говорил тот факт, что фреза тупится со временем и утрачивает свои режущие свойства. Вот было бы здорово, если бы медь с поверхности текстолита можно было удалять бесконтактным способом.

Уже существуют лазерные станки немецкого производителя LPKF, в которых фольга просто испаряется мощным полупроводниковым лазером инфракрасного диапазона. Станки отличаются точностью и скоростью обработки, но их цена ещё выше чем у фрезерных, а собрать из доступных всем материалов такую вещь и как-то её удешевить пока не представляется простой задачей.

Из всего вышесказанного я сформировал некоторые требования к желаемому устройству:

  • Цена сопоставимая со стоимостью среднего домашнего 3д-принтера
  • Бесконтактное удаление меди
  • Возможность собрать устройство из доступных компонентов самостоятельно в домашних условиях

Так я начал размышлять о возможной альтернативе лазеру в области бесконтактного удаления меди с текстолита. И наткнулся на метод электроискровой обработки , который давно применяется в металлообработке для изготовления точных металлических деталей.

При таком методе металл удаляется электрическими разрядами, которые испаряют и разбрызгивают его с поверхности заготовки. Таким образом образуются кратеры, размер которых зависит от энергии разряда, его длительности и, конечно же, типа материала заготовки. В простейшем виде электрическую эрозию стали использовать в 40-х года XX века для пробивания отверстий в металлических деталях. В отличие от традиционной механической обработки отверстия можно было получить практически любой формы. В настоящее время данный метод активно применяется в металлообработке и породил целую серию видов станков.

Обязательной частью таких станков является генератор импульсов тока, система подачи и перемещения электрода - именно электрод (обычно медный, латунный или графитовый) является рабочим инструментом такого станка. Простейший генератор импульсов тока представляет собой простой конденсатор нужного номинала, подключенный к источнику постоянного напряжения через токоограничивающий резистор. При этом емкость и напряжение определяют энергию разряда, которая в свою очередь определяет размеры кратеров, а значит и чистоту обработки. Правда есть один существенный нюанс - напряжение на конденсаторе в рабочем режиме определяется напряжением пробоя. Последнее же практически линейно зависит от зазора между электродом и заготовкой.

За вечер был изготовлен прототип эрозионного инструмента, представляющий собой соленоид, к якорю которого прикреплена медная проволочка. Соленоид обеспечивал вибрацию проволоки и прерывание контакта. В качестве источника питания был использован ЛАТР: выпрямленный ток заряжал конденсатор, а переменный питал соленоид. Эта конструкция была также закреплена в держателе ручки плоттера. В целом, результат оправдал ожидания, и головка оставляла на фольге сплошные полосы со рваными краями.



Способ явно имел право на жизнь, но требовалось решить одну задачу - компенсировать расход проволоки, которая расходуется при работе. Для этого требовалось создать механизм подачи и блок управления для него.

После этого, всё свободное время я начал проводить в одном из хакспейсов нашего города, где есть станки для металлообработки. Начались продолжительные попытки сделать приемлемое режущее устройство. Эрозионная головка состояла из пары шток-втулка, обеспечивающих вертикальную вибрацию, возвратной пружины и протяжного механизма. Для управления соленоидом потребовалось изготовить несложную схему состоящую из генератора импульса заданной длины на NE555, MOSFET-транзистора и индуктивного датчика тока. Первоначально предполагалось использовать режим автоколебаний, то есть подавать импульс на ключ сразу после импульса тока. При этом частота колебаний зависит от величины зазора и управление приводом производится согласно измерению периода автоколебаний. Однако стабильный автоколебательный режим оказался возможен в диапазоне амплитуд колебания головки, который составлял меньше половины максимального. Поэтому я принял решение использовать фиксированную частоту колебаний, генерируемых аппаратным ШИМом. При этом о состоянии зазора между проволокой и платой можно судить по времени между окончанием открывающего импульса и первым импульсом тока. Для большей стабильности при работе и улучшении частотных характеристик соленоид был закреплен над механизмом протяжки проволоки, а якорь размещен на дюралевой скобе. После этих доработок удалось добиться устойчивой работы на частотах до 35 Гц.

Закрепив режущую головку на плоттере, я начал опыты по прорезанию изолирующих дорожек на печатных платах. Первый результат достигнут и головка более-менее устойчиво обеспечивает непрерывный рез. Вот видео, демонстрирующее что получилось:

Принципиальная возможность изготавливать платы при помощи электроискровой обработки подтверждена. В ближайших планах повысить точность, увеличить скорость обработки и чистоту реза, а также выложить часть наработок в открытый доступ. Также планирую адаптировать модуль под использование с RepRap. Буду рад идеям и замечаниям в комментариях.

Производим сверлильные мини станки с ЧПУ для изготовления печатных плат. У нас можно купить оборудование для сверления и фрезеровки плат и корпусов электронной аппаратуры по доступной цене.

Станки СК «Роутер» для изготовления печатных плат

В каталоге продукции СК «Роутер» оборудование для производства печатных плат представлено сверлильными станками с ЧПУ. Модели для печатных плат сконструированы на базе наших фрезерно-гравировальных станков и комплектуются специальными высокоскоростными шпинделями. Наличие такого шпинделя позволяет сверлить и фрезеровать печатные платы с высокой скоростью и точностью.

Если требуется станок более универсального применения, можно посмотреть наши фрезерные мини станки в стандартной комплектации и сверлильное оборудование широкого назначения .

Область применения

Мини станки для печатных плат СК «Роутер» применяются на предприятиях различных отраслей: от общепроизводственных до авиационной и космической. Кроме сверления печатных плат на таких станках можно успешно осуществлять и фрезеровку корпусов радиоэлектронной аппаратуры. Таким образом, возможно реализовать законченное производство электронных приборов.

Комплектация сверлильных станков

В состав базовой поставки станков для печатных плат входит набор оснастки, достаточный для начала изготовления плат в серийном режиме. Вместе с тем, для повышения производительности и удобства работы на станке оборудование может быть доукомплектовано дополнительными опциями: системой ЧПУ, автоматической сменой инструмента, СОЖ и другой технологичной оснасткой.

Видео сверления печатной платы

Посмотрите процесс изготовления печатной платы на одном из наших сверлильных станков: