Водопровод        15.06.2019   

Механическая рука манипулятор своими руками. Роботизированная рука манипулятор. Основные узлы для проекта манипулятора

Робот-манипулятор MeArm — карманная версия промышленного манипулятора. MeArm - простой в сборке и управлении робот, механическая рука. Манипулятор имеет четыре степени свободы, что позволяет легко захватывать и перемещать различные небольшие предметы.

Данный товар представлен в виде набора для сборки. Включает в себя следующие части:

  • набор деталей из прозрачного акрила для сборки механического манипулятора;
  • 4 сервопривода;
  • плата управления, на которой расположен микроконтроллер Arduino Pro micro и графический дисплей Nokia 5110;
  • плата джойстиков, содержащая два двухкоординатных аналоговых джойстика;
  • USB кабель питания.


Перед сборкой механического манипулятора необходимо произвести калибровку сервоприводов. Для калибровки будем использовать контроллер Arduino. Подсоединяем сервоприводы к плате Arduino (необходим внешний источник питания 5-6В 2А).

Servo middle, left, right, claw ; // создание 4 объектов Servo

Void setup()
{
Serial.begin(9600);
middle.attach(11); // присоединяет серво на контакт 11 на вращение платформы
left.attach(10); // присоединяет серво на контакт 10 на левое плечо
right.attach(9); // присоединяет серво на контакт 11 на правое плечо
claw.attach(6); // присоединяет серво на контакт 6 claw (захват)
}

Void loop()
{
// устанавливает позицию сервопривода по величине(в градусах)
middle.write(90);
left.write(90);
right.write(90);
claw.write(25);
delay(300);
}
Используя маркер, сделайте линию через корпус серводвигателя и шпиндель. Подключите пластмассовую качалку из комплекта к сервоприводу, как показано ниже с помощью небольшого винта из комплекта креплений к сервоприводу. Мы будем использовать их в этом положении при сборке механической части MeArm. Будьте осторожны, чтобы не переместить положение шпинделя.


Теперь можно производить сборку механического манипулятора.
Возьмём основание и прикрепим ножки к её углам. Затем установим четыре 20 мм болта и накрутим на них гайки (половину от общей длины).

Теперь крепим центральный сервопривод двумя 8-мм болтами к маленькой пластине, и получившуюся конструкцию крепим к основанию с помощью 20 мм болтов.

Собираем левую секцию конструкции.

Собираем правую секцию конструкции.

Теперь необходимо соединить левую и правую секции. Сначала леую к переходной пластине

Потом правую, и получаем

Подсоединяем конструкцию к платформе

И собираем "клешню"

Крепим "клешню"

Для сборки можно использовать следующее руководство (на англ. языке) или руководство по сборке подобного манипулятора (на русском).

Схема расположения выводов

Теперь можно приступать к написанию Arduino кода. Для управления манипуляторм, наряду с возможностью управления управления с помощью джойстика, было бы неплохо направлять манипулятор в какую-то определенную точку декартовых координат (x, y, z). Есть соответствующая библиотека, которую можно скачать с github - https://github.com/mimeindustries/MeArm/tree/master/Code/Arduino/BobStonesArduinoCode .
Координаты измеряются в мм от центра вращения. Исходное положение находится в точке (0, 100, 50), то есть 100 мм вперед от основания и 50 мм от земли.
Пример использования библиотеки для установки манипулятора в определенной точке декартовых координат:

#include "meArm.h"
#include

Void setup() {
arm.begin(11, 10, 9, 6);
arm.openGripper();
}

Void loop() {
// вверх и влево
arm.gotoPoint(-80,100,140);
// захватить
arm.closeGripper();
// вниз, вред и вправо
arm.gotoPoint(70,200,10);
// отпустить захват
arm.openGripper();
// вернуться вт начальную точку
arm.gotoPoint(0,100,50);
}

Методы класса meArm:

void begin (int pinBase , int pinShoulder , int pinElbow , int pinGripper ) - запуск meArm, указываются пины подключения для сервоприводов middle, left, right, claw. Необходимо вызвать в setup();
void openGripper () - открыть захват;
void closeGripper () - захватить;
void gotoPoint (float x , float y , float z ) - переместить манипулятор в позицию декартовых координат (x, y, z);
float getX () - текущая координата X;
float getY () - текущая координата Y;
float getZ () - текущая координата Z.

Руководство по сборке (англ.)

Из особенностей данного робота на платформе Arduino можно отметить сложность его конструкции. Роборука состоит из множества рычагов, которые позволяют ей двигаться по всем осям, хватать и перемещать различные вещи, используя всего 4 серво-мотора. Собрав собственными руками такого робота, Вы точно сможете удивить своих друзей и близких возможностями и приятным видом данного устройства! Помните, что для программирования Вы всегда сможете воспользоваться нашей графической средой RobotON Studio!

Если у Вас появятся вопросы или замечания, мы всегда на связи! Создавайте и выкладывайте свои результаты!

Особенности:

Чтобы собрать робота манипулятора своими руками, вам понадобится довольно много компонентов. Основную часть занимают 3D печатные детали, их около 18 штук (печатать горку необязательно).Если вы скачали и распечатали все необходимое, то вам потребуются болты, гайки и электроника:

  • 5 болтов М4 20мм, 1 на 40 мм и соответствующие гайки с защитой от раскрутки
  • 6 болтов М3 10мм, 1 на 20 мм и соответствующие гайки
  • Макетка с соединительными проводами или шилд
  • Arduino Nano
  • 4 серво мотора SG 90

После сборки корпуса ВАЖНО убедиться в его свободной подвижности. Если ключевые узлы Роборуки двигаются с трудом, серво-моторы могут не справиться с нагрузкой. Собирая электронику, необходимо помнить, что подключать цепь к питанию лучше после полной проверки соединений. Чтобы избежать поломки серво-приводов SG 90, не нужно крутить руками сам мотор, если нет необходимости. В случае, если нужно разработать SG 90, нужно плавно подвигать вал мотора в разные стороны.

Характеристики:
  • Простое программирование ввиду наличия малого количества моторов, причем одного типа
  • Наличие мертвых зон для некоторых серво-приводах
  • Широкая применимость робота в повседневной жизни
  • Интерсная инженерная работа
  • Необходимость использования 3D принтера

Эта статья — вводное руководство для новичков по созданию роботизированных рук, которые программируются при помощи Ардуино. Концепция состоит в том, что проект роборуки будет недорогим и простым в сборке. Мы соберём несложный прототип с кодом, который можно и нужно оптимизировать, это станет для вас отличным стартом в робототехнике. Робот-манипулятор на Ардуино управляется хакнутым джойстиком и может быть запрограммирован на повторение последовательности действий, которую вы зададите. Если вы не сильны в программировании, то можете заняться проектом в качестве тренировки по сборке «железа», залить в него мой код и получить на его основе базовые знания. Повторюсь, проект достаточно простой.

На видео — демка с моим роботом.

Шаг 1: Список материалов



Нам понадобится:

  1. Плата Ардуино. Я использовал Уно, но любая из разновидностей одинаково хорошо справится с задачами проекта.
  2. Сервоприводы, 4 самых дешевых, что вы найдёте.
  3. Материалы для корпуса на ваш вкус. Подойдёт дерево, пластик, метал, картон. Мой проект собран из старого блокнота.
  4. Если вы не захотите заморачиваться с печатной платой, то понадобится макетная плата. Подойдёт плата небольшого размера, поищите варианты с джамперами и блоком питания — они бывают достаточно дешевы.
  5. Что-то для основания руки — я использовал банку от кофе, это не самый лучший вариант, но это всё, что я смог найти в квартире.
  6. Тонкая нить для механизма руки и иголка для проделывания отверстий.
  7. Клей и изолента, чтобы скрепить всё воедино. Нет ничего, что нельзя было бы скрепить изолентой и горячим клеем.
  8. Три резистора на 10K. Если у вас не найдётся резисторов, то в коде на такие случаи есть обходной манёвр, однако лучшим вариантом будет купить резисторы .

Шаг 2: Как всё работает



На приложенном рисунке изображен принцип работы руки. Также я объясню всё на словах. Две части руки соединены тонкой нитью. Середина нити соединена с сервоприводом руки. Когда сервопривод тянет нить — рука сжимается. Я оснастил руку пружиной из шариковой ручки, но если у вас есть более гибкий материал, можете использовать его.

Шаг 3: Модифицируем джойстик

Предположив, что вы уже закончили сборку механизма руки, я перейду к части с джойстиком.

Для проекта использовался старый джойстик, но в принципе подойдёт любой устройство с кнопками. Аналоговые кнопки (грибы) используются для управления сервоприводами, так как по сути это просто потенциометры. Если у вас нет джойстика, то можете использовать три обычных потенциометра, но если вы, как и я, модифицируете старый джойстик своими руками, то вот что вам нужно сделать.

Я подключил потенциометры к макетной плате, у каждого из них есть по три клеммы. Одну из них нужно соединить с GND, вторую с +5V на Ардуино, а среднюю на вход, который мы определим позже. Мы не будем использовать ось Y на левом потенциометре, поэтому нам нужен только потенциометр над джойстиком.

Что касается переключателей, соедините +5V с одним его концом, а провод, который идёт на другой вход Ардуино со вторым концом. Мой джойстик имеет общую для всех переключателей линию на +5V. Я подключил всего 2 кнопки, но затем подключил еще одну, так как в ней появилась необходимость.

Также важно обрезать провода, которые идут к чипу (черный круг на джойстике). Когда вы завершите всё вышеописанное, можно приступить к проводке.

Шаг 4: Электропроводка нашего устройства

На фотографии изображена электропроводка устройства. Потенциометры — это рычажки на джойстике. Локоть (Elbow) — это правая ось Y, Основа (Base) — это правая ось X, Плечо (Shoulder) — это левая ось X. Если вам захочется поменять направление движения сервоприводов, просто смените положение проводов +5V и GND на соответствующем потенциометре.

Шаг 5: Загрузка кода

На этом этапе нам нужно скачать приложенный код на компьютер, а затем загрузить его на Ардуино.

Заметка: если до этого вы уже загружали код на Ардуино, то просто пропустите этот шаг — вы не узнаете ничего нового.

  1. Откройте ИДЕ Ардуино и вставьте в него код
  2. В Tools/Board выберите вашу плату
  3. В Tools/Serial Port выберите порт, к которому подключена ваша плата. Скорее всего, выбор будет состоят из одного пункта.
  4. Нажмите кнопку Upload.

Вы можете изменить диапазон работы сервоприводов, в коде я оставил заметки о том, как это осуществить. Скорее всего, код будет работать без проблем, вам нужно будет лишь поменять параметр сервопривода руки. Этот параметр зависит от того, как вы настроили нить, поэтому я рекомендую точно подобрать его.

Если вы не используете резисторы, то вам нужно будет модифицировать код в том месте, где я оставил об этом заметки.

Файлы

Шаг 6: Запуск проекта

Робот контролируется движениями на джойстике, рука сжимается и разжимается при помощи кнопки для руки. На видео показано, как все работает в реальной жизни.

Вот способ, которым можно запрограммировать руку:

  1. Откройте Serial Monitor в Ардуино ИДЕ, это позволить проще следить за процессом.
  2. Сохраните начальную позицию, кликнув Save.
  3. За один раз двигайте лишь одним сервоприводом, например, Плечо вверх, и жмите save.
  4. Активируйте руку также только на её шаге, а затем сохраняйте нажатием save. Деактивация также производится на отдельном шаге с последующим нажатием save.
  5. Когда закончите последовательность команд, нажмите кнопку play, робот перейдёт в начальное положение и затем начнёт двигаться.
  6. Если вы захотите остановить его — отсоедините кабель или нажмите кнопку reset на плате Ардуино.

Если вы всё сделали правильно, то результат будет похож на этот!

Надеюсь, урок был вам полезен!

Здравствуйте!

Рассказываем о линейке коллаборативных роботов-манипуляторов Universal Robots .

Компания Юниверсал-роботс родом из Дании, занимается выпуском коллаборативных роботов-манипуляторов для автоматизации циклических производственных процессов. В этой статье приведем их основные технические характеристики и рассмотрим области применения.

Что это?

Продукция компании представлена линейкой из трех облегченных промышленных манипуляционных устройств с разомкнутой кинематической цепью:
UR3 , UR5 , UR10 .
Все модели имеют 6 степеней подвижности: 3 переносные и 3 ориентирующие. Устройства от Юниверсал-роботс производят только угловые перемещения.
Роботы-манипуляторы разделены на классы, в зависимости от предельно допустимой полезной нагрузки. Другими отличиями являются - радиус рабочей зоны, вес и диаметр основания.
Все манипуляторы UR оснащены датчиками абсолютного положения высокой точности, которые упрощают интеграцию с внешними устройствами и оборудованием. Благодаря компактному исполнению, манипуляторы UR не занимают много места и могут устанавливаться в рабочих секциях или на производственных линиях, где не помещаются обычные роботы.Характеристики:
Чем интересны Простота программирования

Специально разработанная и запатентованная технология программирования позволяет операторам, не владеющим специальными навыками, быстро выполнить настройку роботов-манипуляторов UR и управлять ими с помощью интуитивной технологии 3D-визуализации. Программирование происходит путем серии простых передвижений рабочего органа манипулятора в необходимые положения, либо нажатием стрелок в специальной программе на планшете.UR3: UR5: UR10: Быстрая настройка

Оператору, выполняющему первичный запуск оборудования, потребуется менее часа для распаковки, монтажа и программирования первой простой операции. UR3: UR5: UR10: Коллаборативность и безопасность

Манипуляторы UR способны заменить операторов, выполняющих рутинные задачи в опасных и загрязненных условиях. В системе управления ведется учет внешних возмущающих воздействий, оказываемых на робот-манипулятор в процессе работы. Благодаря этому, манипуляционные системы UR можно эксплуатировать без защитных ограждений, рядом с рабочими местами персонала. Системы безопасности роботов одобрены и сертифицированы TÜV – Союзом работников технического надзора Германии.
UR3: UR5: UR10: Многообразие рабочих органов

На конце промышленных манипуляторов UR предусмотрено стандартизированное крепление для установки специальных рабочих органов. Между рабочим органом и конечным звеном манипулятора можно установить дополнительные модули силомоментных сенсоров или камер.Возможности применения

С промышленными роботами-манипуляторами UR открываются возможности автоматизации практически всех циклических рутинных процессов. Устройства компании Юниверсал-роботс отлично зарекомендовали себя в различных областях применения.

Перекладка

Установка манипуляторов UR на участках перекладки и упаковки позволяет увеличить точность и уменьшить усадку. Большинство операций по перекладке может осуществляться без надзора.Полировка, буферовка, шлифовка

Встроенная система датчиков позволяет контролировать точность и равномерность прикладываемого усилия на криволинейных и неровных поверхностях.

Литье под давлением

Высокая точность повторяющихся движений позволяет применять роботы UR для задач переработки полимеров и инжекционного литья.
Обслуживание станков с ЧПУ

Класс защиты оболочки обеспечивает возможность установки манипуляционных систем для совместной работы со станками ЧПУ.Упаковка и штабелирование

Традиционные технологии автоматизации отличаются громоздкостью и дороговизной. Легко настраиваемые роботы UR способны работать без защитных экранов рядом с сотрудниками или без них 24 часа в сутки, обеспечиваю высокую точность и производительность.Контроль качества

Роботизированный манипулятор с видеокамерами пригоден для проведения трехмерных измерений, что является дополнительной гарантией качества выпускаемой продукции.Сборка

Простое устройство крепления рабочего органа позволяет оснащать роботы UR подходящими вспомогательными механизмами, необходимыми для сборки деталей из дерева, пластика, металла и других материалов.Свинчивание

Система управления позволяет контролировать развиваемый момент во избегании избыточной затяжки и обеспечения требуемого натяжения.Склеивание и сварка

Высокая точность позиционирования рабочего органа позволяет сократить количество отходов при выполнении операций склейки или нанесения веществ.
Промышленные роботы-манипуляторы UR могут выполнять различные типы сварки: дуговую, точечную, ультразвуковую и плазменную.Итого:

Промышленные манипуляторы от Юниверсал-роботс компактны, легки, просты в освоении и обращении. Роботы UR – гибкое решение для широкого круга задач. Манипуляторы можно запрограммировать на любые действия присущие движениям человеческой руки, а вращательные движения им удаются намного лучше. Манипуляторам не свойственны усталость и боязнь получить травму, не нужны перерывы и выходные.
Решения от Юниверсал-роботс позволяют автоматизировать любой рутинный процесс, что увеличивает скорость и качество производства.

Обсудите автоматизацию ваших производственных процессов с помощью манипуляторов Юниверсал-роботс с официальным дилером -

Одной из основных движущих сил автоматизации современного производства являются промышленные роботы-манипуляторы. Их разработка и внедрение позволили выйти предприятиям на новый научно-технический уровень выполнения задач, перераспределить обязанности между техникой и человеком, повысить производительность. О видах роботизированных помощников, их функционале и ценах поговорим в статье.

Помощник №1 – робот-манипулятор

Промышленность – фундамент большинства экономик мира. От качества предлагаемых товаров, объемов и ценообразования зависит доход не только отдельно взятого производства, но и государственного бюджета.

В свете активного внедрения автоматизированных линий и повсеместного использования умной техники возрастают требования к поставляемой продукции. Выдержать конкуренцию без использования автоматизированных линий или промышленных роботов-манипуляторов сегодня практически невозможно.

Как устроен промышленный робот

Робот-манипулятор выглядит как огромная автоматизированная «рука» под контролем системы электроуправления. В конструкции устройств отсутствует пневматика или гидравлика, все построено на электромеханике. Это позволило сократить стоимость роботов и повысить их долговечность.

Промышленные роботы могут быть 4-х осевыми (используются для укладки и фасовки) и 6-ти осевыми (для остальных видов работ). Кроме того, роботы отличаются и в зависимости от степени свободы: от 2 до 6. Чем он выше, тем точнее манипулятор воссоздает движение человеческой руки: вращение, перемещение, сжатие/разжатие, наклоны и прочее.
Принцип действия устройства зависит от его программного обеспечения и оснащения, и если в начале своего развития основная цель была освобождение работников от тяжелого и опасного вида работ, то сегодня спектр выполняемых задач значительно возрос.

Использование роботизированных помощников позволяет справляться одновременно с несколькими задачами:

  • сокращение рабочих площадей и высвобождение специалистов (их опыт и знания могут быть использованы на другом участке);
  • увеличение объемов производства;
  • повышение качества продукции;
  • благодаря непрерывности процесса сокращается цикл изготовления.

В Японии, Китае, США, Германии на предприятиях работает минимум сотрудников, обязанностью которых является лишь контроль работы манипуляторов и качество изготавливаемой продукции. Стоит отметить, что промышленный робот-манипулятор – это не только функциональный помощник в машиностроении или сварочном деле. Автоматизированные устройства представлены в широком ассортименте и используются в металлургии, легкой и пищевой промышленности. В зависимости от потребностей предприятия можно подобрать манипулятор, соответствующий функциональным обязанностям и бюджету.

Виды промышленных роботов-манипуляторов

На сегодняшний день существует около 30 видов роботизированных рук: от универсальных моделей до узкоспециализированных помощников. В зависимости от выполняемых функций, механизмы манипуляторов могут отличаться: так например, это могут быть сварочные работы, резка, сверление, гибка, сортировка, укладка и упаковка товаров.

В отличие от существующего стереотипа о дороговизне роботизированной техники, каждое, даже небольшое предприятие, сможет приобрести подобный механизм. Небольшие универсальные роботы-манипуляторы с небольшой грузоподъемностью (до 5кг) ABB, и FANUC будут стоить от 2 до 4 тысяч долларов.
Несмотря на компактность устройств, они способны увеличить скорость работы и качество обработки изделий. Под каждого робота будет написано уникальное ПО, которое в точности координирует работу агрегата.

Узкоспециализированные модели

Роботы сварщики нашли свое наибольшее применение в машиностроении. Благодаря тому, что устройства способны сваривать не только ровные детали, но и эффективно проводить сварочные работы под углом, в труднодоступных местах устанавливают целые автоматизированные линии.

Запускается конвейерная система, где каждый робот за определенное время проделывает свою часть работы, а после линия начинает двигаться к следующему этапу. Организовать такую систему с людьми достаточно непросто: никто из работников не должен отлучаться ни на секунду, в противном случае сбивается весь производственный процесс, либо появляется брак.

Сварщики
Самыми распространенными вариантами являются сварочные роботы. Их производительность и точность в 8 раз выше, чем у человека. Такие модели могут выполнять несколько видов сварки: дуговая или точечная (в зависимости от ПО).

Лидерами в данной области считаются промышленные роботы-манипуляторы Kuka. Стоимость от 5 до 300 тысяч долларов (в зависимости от грузоподъемности и функций).

Сборщики, грузчики и упаковщики
Тяжелый и вредный для человеческого организма труд стал причиной появления в этой отрасли автоматизированных помощников. Роботы упаковщики за считанные минуты подготавливают товар к отгрузке. Стоимость таких роботов до 4 тысяч долларов.

Производители ABB, KUKA, и Epson предлагают воспользоваться устройствами для подъема тяжелых грузов весом больше 1 тонны и транспортировку от склада к месту погрузки.

Производители промышленных роботов манипуляторов

Бесспорными лидерами в данной отрасли считаются Япония и Германия. На их долю приходится более 50% всей роботизированной техники. Конкурировать с гигантами, непросто, однако, и в странах СНГ постепенно появляются собственные производители и стартапы.

KNN Systems. Украинская компания является партнером немецкой Kuka и занимается разработкой проектов по роботизации процессов сварки, фрезеровки, плазменной резки и паллетизации. Благодаря их ПО промышленный робот может быть перенастроен под новый вид задач всего за один день.

Rozum Robotics (Беларусь). Специалисты компании разработали промышленный робот-манипулятор PULSE, отличающийся своей легкостью и простотой в использовании. Устройство подходит для сборки, упаковки, склеиванию и перестановки деталей. Цена робота в районе 500 долларов.

«АРКОДИМ-Про» (Россия). Занимается выпуском линейных роботов-манипуляторов (двигаются по линейным осям), используемых для литья пластика под давлением. Кроме того, роботы ARKODIM могут работать, как часть конвейерной системы, и выполнять функции сварщика или упаковщика.